电商数据分析指标都有哪些?该如何进行分析?
此文是对最近学习的电商相关知识点做一个巩固
电商销售统计表每周 电商销售统计汇总表怎么做
电商销售统计表每周 电商销售统计汇总表怎么做
传统零售利用二八法则生存,电商靠长尾理论积累销售。
传统零售是小数据,电商是大数据。
传统零售是“物流”,零售过程就是商品的流动;电商是“信息流”,顾客通过搜索、比较、评论、分享产生信息,达到购买的目的。
传统零售注重体验感,电商注重服务和效率。
传统零售是做加法,电商是做乘法。传统零售是通过一家家店扩大影响力,电商通过资金的投入迅速抢占市场。
传统零售的主要成本是房租和人工成本,电商的主要成本是物流和营销成本。
总结:电商和传统零售虽有千万种别,但总归都是零售,融合是二者注定的趋势,即现在火热的新零售。
传统零售的数据主要是进销存数据、顾客数据和消费数据。电商的数据却复杂得多,数据来源渠道也很多样化
电商数据来源广泛,常规的流量数据、交易数据、会员数据在品牌的交易平台都有提供。一些第三方网站也提供数据源及分析功能。
1、百度统计:包括流量相关的网站统计、推广统计、移动统计三部分内容。分析内容包括趋势分析、来源分析、页面分析、访客分析、定制分析和优化分析。
2、谷歌分析:包括流量分析工具、内容分析、社交分析、移动分析、转化分析、广告分析几部分内容。
4、CNZZ数据专家(友盟):包括站长统计、全景统计、手机客户端、云、广告管家、广告效果分析和数据中心等。
还有一些无需埋点监测数据的产品,如GrowingIO、神策数据、诸葛io等。
以下为用思维导图进行梳理的电商数据分析指标,总共包括六大类
对访问你网站的访客进行分析,基于这些数据指标可以网页进行改进
这里需要注意两个点
1)影响因素不同:UV 价值更受流量质量的影响;而客单价更受卖的货的影响;
2)使用场景不同:UV 价值可以用来评估页面 / 模块的创造价值的潜力;客单价可以用来比较品类和商品特征,但一个页面客单价高,并不代表它创造价值的能力强,只能得出这个页面的品类更趋近于是卖高价格品类的。
如果网站是为了帮助客户尽快完成他们的任务(比如:购买,答疑解惑),那么在线时长应当是越短越好;如果希望客户一同参与到网站的互动中来,那么时间越久会越好。所以,分析在线时长是否越长越好,要根据产品定位来具体分析
从注册到成交整个过程的数据,帮助提升商品转化率。
对于一个新电商来说,积累数据,找准营运方向比卖多少货,赚多少钱更重要。这个阶段主要 关注流量指标 ,指标如下:
对于已经有规模的电商,利用数据分析 提升整体营运水平 就很关键。重点指标如下:
数据指标分为指标、分析指标和营运指标,营运指标就是绩效考核指标。一个团队的销售额首先是出来的,其次是分析出来的,才是绩效考核出来的。销售自然是按天、按时段说话,分析一般是以周和月为单位,绩效考核常常是以月为主、以年为辅。
执行人员侧重过程指标,管理层侧重结果指标。对于数据分分析人员来说要学会根据职位提供不同的数据。
1、无流量不电商,对于流量分析,我们常用漏斗图来做分析,几乎每个流量的细分都可以用到漏斗图。
2、漏斗图就是一个细分和溯源的过程,通过不同的层次分解从而找到转化的逻辑。
3、漏斗图的弱点,就是反应一条转化路径的形态,我们可以稍加修改实现漏斗图的对比功能。
1、流量的质量分为质和量两方面,只有质没有量的流量是没有多少实际价值的,流量的质体现在不同的营销目的上,例如获得点击、注册、收藏、购买或者获取利润的目的。
3、图中的Y轴可以根据具体的分析目的替换成点击率、注册率、收藏率、ROI(单元产出)等进行对比分析。
四象限分析图中,X轴、Y轴、分析对象都可以根据不同的目的进行替换。
4、散点图的四象限分析可以结合趋势,或者演变成四象限气泡图,气泡图的大小为ROI,这种四象限图信息量更大。
1、电商的销售针对比传统零售复杂很多,主要复杂在流量的多层次多渠道上,互联网的好处是几乎能将用户的每个动作记录下来,然后我们从中找到关键点进行诊断即可。下图,是一个类似杜邦分析会员回购率。指上一期末活跃会员在下一期时间内有购买行为的会员比率。的图,从值(图中红色)和率(图中蓝色)两个方面,订单、新客、老客三个维度将销售额拆成五个层次,每个层次间具有加或乘的逻辑关系。
3、通过上图,使用对比、细分的原则分析可以判断出哪儿些指标变化对销售额产生了影响。
参考书籍为《数据化管理——洞对于已经经营一段时间的电商,通过数据分析 提高店铺销量 就是首要任务。此阶段的重点指标是 流量和销售指标 ,指标如下:悉零售及电子商务运营》
某电器一周内销售电脑台数的统计表,不小心被墨水弄污了。你知道星期三和星期四各卖多少台电脑吗
3、Crazy egg热力图:主要特色是对页面热点分析的热力图。这个纯数学了。
1. 总体运营指标我试试,还有个问题.你那一周是7天算还是6天算.按你提供的应该是6天算了。
796=474-----一周销量
474-74-81-89-85=145-----周三和周四的销售量
这样剩下的事情就要你自己在算了。
电商平台应该分析哪些数据?
基础类指标,包括一定统计周期内的下单笔数、下单金额以及下单买家数。2.网站流量指标
以上是小编为大家分享的关于即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析等等。
3. 销售转化指标
分析从下单到支付整个过程的数据,帮助你提升商品转化率。也可以对一些频繁异常的数据展开分析。
4. 客户价值指标
这里主要就是分析客户的价值,可以建立RFM价值模型,找出那些有价值的客户,精准营销等等。
5.商品类指标
主要分析商品的种类,那些商品卖得好,库存情况,以及可以建立关联模型,分析那些商品同时销售的几率比较高,而进行捆绑销售,有点像啤酒喝尿布的故事。
6. 市场营销活动指标
主要某次活动给电商网站带来的效果,以及广告的投放指标。
7. 风控类指标
分析卖家评论,以及投诉情况,发现问题,改正问题。
8. 市场竞争指标
主要分析市场份额以及网站排名,进一步进行调整。
关于电商平台应该分析哪些数据,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
如何做电商数据分析
电商行业半年成绩抢眼目前我也从事数据分析,主要用到的是数据表;主要是提供一些报表供参考。其实我感觉应该用到了5W2H分析法,还跟我说过SWTO矩阵分析法,2、可以通过四象限分析图来对比分析流量的质量。下图是针对购买的转化率和流量的四象限图,其中象限的流量应该是高质量的,流量和转化率均高于平均值;第二象限渠道的流量转化率高,但量不大,通过搜索来的流量大部分属于此类;第四象限流量属于质低量高,站外购买的流量这种情况比较多;第三象限属于质低量低的双低流量,不用特别维护,任其发展即可。让我下去仔细研究。
据说数据分析要有以下的一些步骤:明确分析思路,数据收集,收集存储,数据整理,数据分析,数据呈现,报告撰写等。
电商的数据分析,我个人以为,应该至少有销量分析,包括销量,销售额,客户人数,地区分布,top30等,我们公司还有页码分析;仓库分析,包括库存表,库存预警表,销售渠道分析;购买意向性分析,季节性,促销活动等对销售的影响等。具体问题具体分析,我知道的另一家电商分析却采用的是数学模型分析预测的。电商数据分析,往往可以通过这样几个步骤:
1. 建立完整的数据体系
2. 对获取到的数据报表进行分析,找出其中问题
3. 针对从数据中找到的问题提出解决方案,评估解决方案的实现成本,并着手改进
一、首先建立数据体系。
除此之外,除了点击流数据还需要其他数据,比如不同的销售渠道会涉及到不同的数据:
1. 搜索引擎优化,搜索引擎站长工具后台数据,其他SEO数据
2. 搜索引擎营销(竞价)竞价后台数据
4. 展示类广告投放 广告投放平台数据 等
从这些后台中拉出报表,看趋势,按照不同的维度细分,找出问题
三、提出解决方案
根据数据中发现的问题,结合业务需要,给出解决的方法。重要的是需要评估好工作量和成本,不可以做盲目的改动。电商数据积累的越来越多,人工处理分析很苦难,这就要借助大数据分析工具了,大数据可视化分析工具大数据魔镜,有5个版本,云平台版本,免费,基础企业版离线安装使用也是免费的,另外还有标准企业版,高级企业版和hadoop版,可以针对大数据的企业的需求定制解决方案,做的很专业。谢谢采纳也是学徒级别,学习中!经济基础环境(网络可达性、物流可达性、支付可得性);
市场活跃状况及供需关系(网络活跃度指数、网络消费价格指数、网络经营价格指数、网络融资环境指数);
经济规模走势(网络消费指数、网络投资指数、网络贸易指数);
经济总量(电子商务经济增加值、电子商务就业量)
洛阳儒墨科技公司——产业电商经济数据监测、预测与政策模拟平台
电商数据分析基础指标体系
电商网站中比不可少的是网站的点击流数据,这个数据通常可以通过安装数据工具来实现:如Google Analytics, CNZZ等。需要注意的是,电商网站中往往会涉及到网站销售,因此需要对网站数据统计工具进行配置,获得销售订单数据。电商数据分析基础指标体系
转化类指标。包括浏览-支付买家转化率(支付买家数/网站访客数)、下单-支付金额转化率(支付金额/下单金额)、下单-支付买家数转化率(支付买家数/下单买家数)和下单-支付时长(下单时间到支付时间的值)。信息流、物流和资金流三大平台是电子商务的三个最为重要的平台。而电子商务信息系统最核心的能力是大数据能力,包括大数据处理、数据分析和数据挖掘能力。无论是电商平台(如淘宝)还是在电商平台上销售产品的卖家,都需要掌握大数据分析的能力。越成熟的电商平台,越需要以通过大数据能力驱动电子商务运营的精细化,更好的提升运营效果,提升业绩。构建系统的电子商务数据分析指标体系是数据电商精细化运营的重要前提,本文将重点介绍电商数据分析指标体系。
电商数据分析指标体系分为八大类指标,包括总体运营指标、网站流量累指标、销售转化指标、客户价值指标、商品及供应链指标、营销活动指标、风险控制指标和市场竞争指标。不同类别指标对应电商运营的不同环节,如网站流量指标对应的是网站运营环节,销售转化、客户价值和营销活动指标对应的是电商销售环节。
(1)流量类指标
访客数(UV),指访问电商网站的不重复用户数。对于PC网站,统计系统会在每个访问网站的用户浏览器上“种”一个cookie来标记这个用户,这样每当被标记cookie的用户访问网站时,统计系统都会识别到此用户。在一定统计周期内如(一天)统计系统会利用消重技术,对同一cookie在一天内多次访问网站的用户仅记录为一个用户。而在移动终端区分用户的方式则是按设备计算用户。
页面访问数(PV),即页面浏览量,用户每一次对电商网站或着移动电商应用中的每个网页访问均被记录一次,用户对同一页面的多次访问,访问量累计。
人均页面访问数,即页面访问数(PV)/访客数,该指标反映的是网站访问粘性。
(2)订单产生效率指标
总订单数量,即访客完成网上下单的订单数之和。
访问到下单的转化率,即电商网站下单的次数与访问该网站的次数之比。
(3)总体销售业绩指标
网站成交额(GMV),电商成交金额,即只要网民下单,生成订单号,便可以计算在GMV里面。
销售金额。销售金额是货品出售的金额总额。
注:无论这个订单最终是否成交,有些订单下单未付款或取消,都算GMV,销售金额一般只指实际成交金额,所以,GMV的数字一般比销售金额大。
客单价,即订单金额与订单数量的比值。
销售毛利,是销售收入与成本的值。销售毛利中只扣除了商品原始成本,不扣除没有计入成本的期间费用(管理费用、财务费用、营业费用)。
毛利率,是衡量电商企业盈利能力的指标,是销售毛利与销售收入的比值。如京东的2014年毛利率连续四个季度稳步上升,从季度的10.0%上升至第四季度的12.7%,体现出京东盈利能力的提升。
2.网站流量指标(1)流量规模类指标
(2)流量成本累指标
单位访客获取成本。该指标指在流量推广中,广告活动产生的投放费用与广告活动带来的访客数的比值。单位访客成本与平均每个访客带来的收入以及这些访客带来的转化率进行关联分析。若单位访客成本上升,但访客转化率和单位访客收入不变或下降,则很可能流量推广出现问题,尤其要关注渠道推广的问题。
(3)流量质量类指标
跳出率(Bounce Rate)也被称为蹦失率,为浏览单页即退出的次数/该页访问次数,跳出率只能衡量该页做为着陆页面(LandingPage)的访问。如果花钱做推广,着落页的跳出率高,很可能是因为推广渠道选择出现失误,推广渠道目标人群和和被推广网站到目标人群不够匹配,导致大部分访客来了访问一次就离开。
页面访问时长。页访问时长是指单个页面被访问的时间。并不是页面访问时长越长越好,要视情况而定。对于电商网站,页面访问时间要结合转化率来看,如果页面访问时间长,但转化率低,则页面体验出现问题的可能性很大。
人均页面浏览量。人均页面浏览量是指在统计周期内,平均每个访客所浏览的页面量。人均页面浏览量反应的是网站的粘性。
(4)会员类指标
注册会员数。指一定统计周期内的注册会员数量。
活跃会员数。活跃会员数,指在一定时期内有消费或登录行为的会员总数。
活跃会员率。即活跃会员占注册会员总数的比重。
会员复购率。指在统计周期内产生二次及二次以上购买的会员占购买会员的总数。
会员平均购买次数。指在统计周期内每个会员平均购买的次数,即订单总数/购买用户总数。会员复购率高的电商网站平均购买次数也高。
会员留存率。会员在某段时间内开始访问你的网站,经过一段时间后,仍然会继续访问你的网站就被认作是留存,这部分会员占当时新增会员的比例就是新会员留存率,这种留存的计算方法是按照活跃来计算,另外一种计算留存的方法是按消费来计算,即某段的新增消费用户在往后一段时间时间周期(时间周期可以是日、周、月、季度和半年度)还继续消费的会员比率。留存率一般看新会员留存率,当然也可以看活跃会员留存。留存率反应的是电商留住会员的能力。
3.网站销售(转化率)类指标(1)购物车类指标
基础类指标,包括一定统计周期内加入购物车次数、加入购物车买家数、加入购物车买家数以及加入购物车商品数。
转化类指标,主要是购物车支付转化率,即一定周期内加入购物车商品支付买家数与加入购物车购买家数的比值。
(2)下单类指标
转化类指标,主要是浏览下单转化率,即下单买家数与网站访客数(UV)的比值。
(3)支付类指标
基础统计类指标,包括一定统计周期内支付金额、支付买家数和支付商品数。
4.客户价值类指标客户指标。常见客户指标包括一定统计周期内的累计购买客户数和客单价。客单价是指每一个客户平均购买商品的金额,也即是平均交易金额,即成交金额与成交用户数的比值。
新客户指标。常见新客户指标包括一定统计周期内的新客户数量、新客户获取成本和新客户客单价。其中,新客户客单价是指次在店铺中产生消费行为的客户所产生交易额与新客户数量的比值。影响新客户客单价的因素除了与推广渠道的质量有关系,还与电商店铺活动以及关联销售有关。
老客户指标。常见老客户指标包括消费频率、最近一次购买时间、消费金额和重复购买率。消费频率是指客户在一定期间内所购买的次数;最近一次购买时间表示客户最近一次购买的时间离现在有多远;客户消费金额指客户在最近一段时间内购买的金额。消费频率越高,最近一次购买时间离现在越近,消费金额越高的客户越有价值。重复购买率则指消费者对该品牌产品或者服务的重复购买次数,重复购买率越多,则反应出消费者对品牌的忠诚度就越高,反之则越低。重复购买率可以按两种口径来统计:种,从客户数角度,重复购买率指在一定周期内下单次数在两次及两次以上的人数与总下单人数之比,如在一个月内,有100个客户成交,其中有20个是购买两次及以上,则重复购买率为20%;第二种,按交易计算,即重复购买交易次数与总交易次数的比值,如某月内,一生了100笔交易,其中有20个人有了二次购买,这20人中的10个人又有了三次购买,则重复购买次数为30次,重复购买率为30%。
产品优势性指标。主要是产品的收入占比,即销售的产品收入占总销售收入的比例。
品牌存量指标。包括品牌数和在线品牌数指标。品牌数指商品的品牌总数量。在线品牌数则指在线商品的品牌总数量。
上架。包括上架商品SKU数、上架商品SPU数、上架在线SPU数、上架商品数和上架在线商品数。
首发。包括首次上架商品数和首次上架在线商品数。
6.市场营销活动指标市场营销活动指标。包括新增访问人数、新增注册人数、总访问次数、订单数量、下单转化率以及ROI。其中,下单转化率是指活动期间,某活动所带来的下单的次数与访问该活动的次数之比。投资回报率(ROI)是指,某一活动期间,产生的交易金额与活动投放成本金额的比值。
广告投放指标。包括新增访问人数、新增注册人数、总访问次数、订单数量、UV订单转化率、广告投资回报率。其中,下单转化率是指某广告所带来的下单的次数与访问该活动的次数之比。投资回报率(ROI)是指,某广告产生的交易金额与广告投放成本金额的比值。
7、风控类指标买家评价指标。包括买家评价数,买家评价卖家数、买家评价上传数、买家评价率、买家好评率以及卖家评率。其中,买家评价率是指某段时间参与评价的卖家与该时间段买家数量的比值,是反映用户对评价的参与度,电商网站目前都在积极用户评价,以作为其他买家购物时候的参考。买家好评率指某段时间内好评的买家数量与该时间段买家数量的比值。同样,买家评率指某段时间内评的买家数量与该时间段买家数量的比值。尤其是买家评率,是非常值得关注的指标,需要起来,一旦发现买家评率在加速上升,一定要,分析引起评率上升的原因,及时改进。
买家投诉类指标。包括发起投诉(或申诉),撤销投诉(或申诉),投诉率(买家投诉人数占买家数量的比例)等。投诉量和投诉率都需要及时,以发现问题,及时优化。
8、市场竞争类指标市场份额相关指标,包括市场占有率、市场扩大率和用户份额。市场占有率指电商网站交易额占同期所有同类型电商网站整体交易额的比重;市场扩大率指购物网站占有率较上一个统计周期增长的百分比;用户份额指购物网站访问用户数占同期所有B2C购物网站合计访问用户数的比例。
网站排名,包括交易额排名和流量排名。交易额排名指电商网站交易额在所有同类电商网站中的排名;流量排名指电商网站访客数量在所有同类电商网站中的排名。
总之,本文介绍了电商数据分析的基础指标体系,涵盖了流量、销售转化率、客户价值、商品类目、营销活动、风控和市场竞争指标,这些指标都需要系统化的进行统计和,才能更好的发现电商运营健康度的问题,以更好及时改进和优化,提升电商收入。如销售转化率,其本质上是一个漏斗模型,如从网站首页到最终购买各个阶段的转化率的和分析是网站运营健康度很重要的分析方向。
电商半年销售有哪些成绩?
3. 社交媒体:社交媒体后台数据无论是618还是双十一,都是电商行业创造出来的购物节,在全民“买买买”的购物狂欢中,电商行业迎来新一轮销售热潮。
1 成145/2=72.5------周三和周四的平均销售量绩一:电商半年销售再破纪录
从去年12月至今年5月,6个月网络零售总额首次突破3万亿,超过了2014年全年的数额,创下电商零售同期纪录。
成绩二:网络零售规模稳居全球
今年季度,消费者的总额,是美国的两倍多;从网络零售市场规模来看,我国已经连续多年稳居全球;去年,我国电子商务交易额占到了全球总量的1/3以上。
此外,我国网络零售额在零售总额的占比,不仅远高于全球平均水平,也高于欧洲、北美,并且在最近三年,这一占比仍然在不断提升。
成绩三:电商产业“力挺”GDP
电商的成绩抢眼,也为经济稳增长,添上了一抹亮色。今年一季度,经济继续保持平稳增长,增速达到6.9%;而分产业看,产业,也就是农、林、牧、渔业,在GDP中占比4.79%,增加值同比增长3%,第二产业,也就是矿业和制造业等工业活动,占比38.74%,增加值同比增长6.4%,而第三产业,即服务业,占比56.47%,增加值增长7.7%。由此可以看出,服务业对经济企稳的重要性。
而在促进国内居民消费,拉动经济增长方面,电商起到的作用不容小视:根据测算,今年一季度的电商消费,直接带动GDP增长1.3个百分点。
成绩四:电商带动居民消费升级
电商行业的发展成就,不仅体现在数量的变化上,更重要的是,对人生活品质、消费行为的改变和提升。
在这半年里,虽然服装、家电这两类产品,在网络消费中仍然占了不小的比重;但在所有品类当中,增长速度最快,排名前三的分别是:医疗保健、图书音像和运动户外,这三类商品的网络销售额,同比增幅都超过了40%。
消费者越来越愿意把钱花在运动、健康和知识修养方面,这说明除了传统的衣食住行之外,人开始更关心生活质量的提升。尤其值得一提的是,随着图书音像制品网络消费额的增长,我国的国民阅读率也在连年提升:帮助我们更多的拿起书本、放下手机,这或许是电商业发展,带来的一个意外收获。
电商数据分析报告包括哪些内容?
从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的hi
电商数据分析报告一般包括以下内容:
1. 总体概况:概述电商企业的业务规模、市场份额、销售额等。
2. 用户数据分析:5. 市场竞争情况:分析竞争对手、市场趋势等。分析用户数量、用户行为、用户画像、用户留存率等数据,以及用户对企业的评价和反馈。
3. 产品数据分析:分析产品销售情况、产品类别、产品热度、产品价格等数据。
4. 销售数据分析:分析销售额、订单量、销售渠道等数据。
6. 运营策略分析:基于数据提出运营策略建议,例如如何提高用户转化率、如何调整产品定价等。
7. 数据可视化分析:通过图表、表格等形式将数据呈现出来,便于理解和分析。
以上是电商数据分析报告通常包含的内容,根据具体的分析目的和分析数据,报告的内容可能会有所不同。
excel计算销售额公式
工具/原料:
Thin使用函数公式”=SUMPRODUCT(单元格,单元格)“即可快速计算销售额。kPad X1
Windows10
WPS off13.0.503.101
1、打开一个excel“销售金额统计表“。
2、输入商品名称、销售数量及销售单价。
3、在销售金额单元格下输入函数公式”=SUMPRODUCT(B3,C3)“。
4、按enter键即可计算出销售金额。
1、首先需要打开我电脑,进入电脑桌面,打(4)整体指标开Excel表格,在表格里选中所有的销售额。
2、然后需要做的是, 点击开始菜单项下面的自动求和按钮,即可算出总销售额。
3、之后需要做的是,选中总销售额所在的单元格,插入函数sum,并输入参数“H2”。
4、需要做的是, 输入第二个参数“H10”,即可算出H2到H10所有销售额的累加结果。
Excel怎么用函数计算销售额?这个视频告诉你!
各省电子商务销售额
各省电子商务销售额是指各个省份在电子商务领域内的销售额统计数据,随着电商行业的不断发展,电商销售额占比也越来5.商品类指标产品总数指标。包括SKU、SPU和在线SPU。SKU是物理上不可分割的最小存货单位。SPU即Standard Product Unit (标准化产品单元),SPU是商品信息聚合的最小单位,是一组可复1.电商总体运营指标电商总体运营整体指标主要面向的人群电商运营的高层,通过总体运营指标评估电商运营的整体效果。电商总体运营整体指标包括四方面的指标:用、易检索的标准化信息的,该描述了一个产品的特性。通俗点讲,属性值、特性相同的商品就可以称为一个SPU。如iphone5S是一个SPU,而iPhone 5S配置为16G版、4G手机、颜色为金色、网络类型为TD-LTE/TD-SCDMA/WCDMA/GSM则是一个SKU。在线SPU则是在线商品的SPU数。越高。据数据显示,我国电子商务市场规模持续快速增长,年销售额已达到17.9万亿元。其中,江苏、广东、上海、山东、浙江等省份的电子商务发展最为活跃,电商销售额占比,尤其是以广东省为代表的南方城市,电子商务市场销售额一直保持着国内领先地位。
我是一家电商企业,有一个库房,想制定安全库存数量,知道每种商品的月平均销售量,安全库存量如何计算?
常用的流量规模类指标包括访客数和页面访问数,相应的指标定义在前文(电商总体运营指标)已经描述,在此不在赘述。安全库存的计算公式:
安全存储量=(预计每天或每周2、销售额是一个结果指标,图中的20个指标是过程指标,每个指标的变化都会影响最终的销售额,基本都是正相关。(折扣和销售额的关联会稍微复杂一些)的平均耗用量(订单处理期+供应商之纳期)+日安全库存.
供应商之纳期就是订单下了后,货物到你库房的时间。相当于交货期